
6. Risk Attitudes

Duarte Gonçalves
University College London

MRes Microconomics



Overview

Understanding attitudes toward risk is fundamental to understand behaviour
how people constitute their financial portfolios;
behaviour in the context of a pandemic;
purchasing decisions;
willingness to take up a job or continue searching for a better one;
voting for new parties/candidates; etc.

Focus on case of preferences over wealth
Indirect utility: v(p,w) = maxx∈B(p,w) u(x); under some assumptions (which?) we get
v(p, ·) strictly increasing.

With preferences over lotteries over wealth and some more assumptions, we get
something like an EU representation: EF [v(p, ·)]
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Overview

Today:
1. Introduce and study behavioural notions of risk aversion (which can be

tested/falsified with data).
2. Provide a behavioural way to compare individuals in terms of their risk attitudes,

even if not risk averse;
Show how this relates to structural properties of their EU representations.

3. Examine implications (e.g., behavioural fingerprints) of patterns of how attitudes
toward risk can be affected by wealth.
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Setup

• Outcome space: X ⊆ R, convex

x ∈ X: DM’s final wealth.

• Cumulative Probability Distributions Function F
F : R → [0, 1] s.t. F is nondecreasing, right-continuous, limx→–∞ F(x) = 0, and
limx→∞ F(x) = 1 with support on X, i.e. PF(X) =

∫
X dF(x) = 1.

Expectation Operator: EF [·]

Mean: µF = EF [x]

• F : set of (Borel) probability measures on X with finite mean µF (endowed with topology
of weak convergence)

• Preference Relation: ≿⊆ F2 sat. independence, Archimedean property, continuity, and
monotonicity (x > y =⇒ δx ≻ δy)

• EU Representation: u : X → R s.t. ∀F,G, F ≿ G ⇐⇒ EF [u] ≥ EG[u]

Implies independence and Archimedean property
(glossing over some details here — see section 5.2. in Kreps (2012))

Define U(F) := EF [u]
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Setup

Assumption

Preference relation ≿ on F has EU representation u : X → R strictly increasing.
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Risk Attitudes
Risk attitudes: general patterns of behaviour toward risk

Almost taxonomical approach
Capture idea of avoiding/seeking risk

Risk aversion as rejecting fair gambles (±£x wp 1/2)
Extend idea to more general lotteries

Definition

A preference relation ≿ on F is
(i) risk averse if ∀F ∈ F , δµF ≿ F;

(ii) risk neutral if ∀F ∈ F , δµF ∼ F;

(iii) risk seeking if ∀F ∈ F , δµF ≾ F.

Definition

(i) The certainty equivalent of F for ≿ is c(F,≿) ∈ X such that δc(F,≿) ∼ F.

(ii) The risk premium of F for ≿ is the real number R(F,≿) := µF – c(F,≿).
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Risk Attitudes

Theorem

The following statements are equivalent:
(i) ≿ is risk averse (risk seeking).

(ii) c(F,≿) ≤ (≥)µF , ∀F ∈ F .

(iii) u is concave (convex).

Proof

(i) ⇐⇒ (ii): δµF ≿ F ⇐⇒ u(µF) = U(δµF ) ≥ U(F) = u(c(F,≿)) (using monotonicity of u).

(i) =⇒ (iii): ∀x, x′ ∈ X : x > x′, and ∀α ∈ [0, 1], let F deliver x wp α and x′ with wp 1 – α.
Then, u(αx + (1 – α)x′) = u(µF) = U(δµF ) ≥ U(F) = EF [u] = αu(x) + (1 – α)u(x′).

(i) ⇐= (iii): Take same F as defined. Then, U(δµF ) = u(µF) ≥ EF [u] = U(F).

The proof of equivalences for risk seeking preferences is symmetric. □

Gonçalves (UCL) 6. Risk Attitudes 6



Risk Attitudes

Theorem

The following statements are equivalent:
(i) ≿ is risk averse (risk seeking).

(ii) c(F,≿) ≤ (≥)µF , ∀F ∈ F .

(iii) u is concave (convex).

Proof

(i) ⇐⇒ (ii): δµF ≿ F ⇐⇒ u(µF) = U(δµF ) ≥ U(F) = u(c(F,≿)) (using monotonicity of u).

(i) =⇒ (iii): ∀x, x′ ∈ X : x > x′, and ∀α ∈ [0, 1], let F deliver x wp α and x′ with wp 1 – α.
Then, u(αx + (1 – α)x′) = u(µF) = U(δµF ) ≥ U(F) = EF [u] = αu(x) + (1 – α)u(x′).

(i) ⇐= (iii): Take same F as defined. Then, U(δµF ) = u(µF) ≥ EF [u] = U(F).

The proof of equivalences for risk seeking preferences is symmetric. □

Gonçalves (UCL) 6. Risk Attitudes 6



Risk Attitudes

Theorem

The following statements are equivalent:
(i) ≿ is risk averse (risk seeking).

(ii) c(F,≿) ≤ (≥)µF , ∀F ∈ F .

(iii) u is concave (convex).

Proof

(i) ⇐⇒ (ii): δµF ≿ F ⇐⇒ u(µF) = U(δµF ) ≥ U(F) = u(c(F,≿)) (using monotonicity of u).

(i) =⇒ (iii): ∀x, x′ ∈ X : x > x′, and ∀α ∈ [0, 1], let F deliver x wp α and x′ with wp 1 – α.
Then, u(αx + (1 – α)x′) = u(µF) = U(δµF ) ≥ U(F) = EF [u] = αu(x) + (1 – α)u(x′).

(i) ⇐= (iii): Take same F as defined. Then, U(δµF ) = u(µF) ≥ EF [u] = U(F).

The proof of equivalences for risk seeking preferences is symmetric. □

Gonçalves (UCL) 6. Risk Attitudes 6



Risk Attitudes

Theorem

The following statements are equivalent:
(i) ≿ is risk averse (risk seeking).

(ii) c(F,≿) ≤ (≥)µF , ∀F ∈ F .

(iii) u is concave (convex).

Proof

(i) ⇐⇒ (ii): δµF ≿ F ⇐⇒ u(µF) = U(δµF ) ≥ U(F) = u(c(F,≿)) (using monotonicity of u).

(i) =⇒ (iii): ∀x, x′ ∈ X : x > x′, and ∀α ∈ [0, 1], let F deliver x wp α and x′ with wp 1 – α.
Then, u(αx + (1 – α)x′) = u(µF) = U(δµF ) ≥ U(F) = EF [u] = αu(x) + (1 – α)u(x′).

(i) ⇐= (iii): Take same F as defined. Then, U(δµF ) = u(µF) ≥ EF [u] = U(F).

The proof of equivalences for risk seeking preferences is symmetric. □

Gonçalves (UCL) 6. Risk Attitudes 6



Risk Attitudes

Theorem

The following statements are equivalent:
(i) ≿ is risk averse (risk seeking).

(ii) c(F,≿) ≤ (≥)µF , ∀F ∈ F .

(iii) u is concave (convex).

Proof

(i) ⇐⇒ (ii): δµF ≿ F ⇐⇒ u(µF) = U(δµF ) ≥ U(F) = u(c(F,≿)) (using monotonicity of u).

(i) =⇒ (iii): ∀x, x′ ∈ X : x > x′, and ∀α ∈ [0, 1], let F deliver x wp α and x′ with wp 1 – α.
Then, u(αx + (1 – α)x′) = u(µF) = U(δµF ) ≥ U(F) = EF [u] = αu(x) + (1 – α)u(x′).

(i) ⇐= (iii): Take same F as defined. Then, U(δµF ) = u(µF) ≥ EF [u] = U(F).

The proof of equivalences for risk seeking preferences is symmetric. □

Gonçalves (UCL) 6. Risk Attitudes 6



Overview

1. Risk Attitudes

2. Setup

3. Risk Attitudes

4. Comparing Risk Attitudes

5. Risk Attitudes with Changing Wealth

6. Two Functional Forms for Expected Utility

7. More



Comparing Risk Attitudes

A person may take a fair bet for low stakes, but not if stakes are too high

Risk averse? Risk seeking?

Risk averse is too demanding

Can we nevertheless compare different people’s risk attitudes?
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Comparing Risk Attitudes

Definition

≿a is said to be more risk averse than ≿b if F ≿a
δx =⇒ F ≿b

δx , ∀F ∈ F , ∀x ∈ X.

Whenever person b declines a bet in favour of some sure thing,
a more risk averse person a declines too

Definition

For an EU representation u ∈ C2 and x ∈ X, define the Arrow-Pratt coefficient of
absolute risk aversion as rA(x, u) := – u′′(x)

u′(x) .

Measures the rate at which mg utility of wealth changes

Why not just the curvature? (more/less concave)
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Comparing Risk Attitudes

Theorem

Let ≿a,≿b be two preference relations on F and ua, ub be strictly increasing expected
utility representations of≿a,≿b, respectively. The following statements are equivalent:
(i) ≿a is more risk averse than ≿b.

(ii) c(F,≿a) ≤ c(F,≿b), ∀F ∈ F .

(iii) If ub ∈ C0, then ∃ is a real-valued, strictly increasing, concave function φ such that
ua = φ ◦ ub.

(iv) If ua, ub ∈ C2, then rA(x, ua) ≥ rA(x, ub) for any x ∈ X.

Gonçalves (UCL) 6. Risk Attitudes 9



Comparing Risk Attitudes

Theorem
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Proof
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a F
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b F ∼b
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Comparing Risk Attitudes

Theorem

(ii) c(F,≿a) ≤ c(F,≿b), ∀F ∈ F .

(iii) If ub ∈ C0, then ∃ is a real-valued, strictly increasing, concave function φ such that
ua = φ ◦ ub.

Proof

(ii) =⇒ (iii): ub strictly increasing =⇒ ub
–1

well-defined.

φ := ua ◦ ub
–1

; strictly increasing ∵ ua, ub strictly increasing.

X convex and ub is continuous and strictly increasing =⇒ ub(X) convex.

Further: φ(ub(x)) = ua(ub
–1

(ub(x))) = ua(x).

We prove by contrapositive. Suppose φ not concave.
=⇒ ∃x, x′ ∈ X, and α ∈ (0, 1) : φ(αub(x) + (1–α)ub(x′)) < αφ(ub(x)) + (1–α)φ(ub(x′)).
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Comparing Risk Attitudes

Theorem

(iii) If ub ∈ C0, then ∃ is a real-valued, strictly increasing, concave function φ such that
ua = φ ◦ ub.

(iv) If ua, ub ∈ C2, then rA(x, ua) ≥ rA(x, ub) for any x ∈ X.

Proof

(iii) ⇐⇒ (iv):

ua, ub strictly increasing and differentiable =⇒ ua′, ub
′
> 0.

φ := ua ◦ ub
–1

and ua, ub ∈ C2 =⇒ φ
′ > 0 and φ ∈ C2.

By definition, ua′′(x) = φ
′′(ub(x))(ub

′
(x))

2
+ φ

′(ub(x))ub
′′
(x).

rA(x, u
a) = –φ

′′(ub(x))(ub
′
(x))

2
+ φ

′(ub(x))ub
′′
(x)

φ′(ub(x))ub′(x)
= –φ

′′(ub(x))ub
′
(x)

φ′(ub(x))
– ub

′′
(x)

ub′(x)
≥ rA(x, u

b)

⇐⇒ φ
′′ ≤ 0.
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Risk Attitudes with Changing Wealth

Folk wisdom: wealthier people are more risk seeking.

How can we formalise (and test) statements like these?

Answer: use our notion of comparative risk aversion + shift lotteries by baseline Wealth

Varying Wealth: For lottery F and w ∈ R, write F + w ∈ F as lottery arising from adding
w to every outcome, i.e., (F + w)(x) := F(x – w).

Wealth-Dependent Preferences: For pref. rel. ≿ on F , write ≿w as preference given
additional wealth w: F ≿w G ⇐⇒ F + w ≿ G + w.

EU: uw(x) := u(x + w) and Uw(F) := EF [uw].
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Risk Attitudes with Changing Wealth

Definition

u exhibitsdecreasing/constant/increasing absolute risk aversion (DARA/CARA/IARA)
if rA(x, u) is decreasing/constant/increasing in x.

Theorem

Let≿ be a preference relation onF and u a strictly increasing expected utility represen-
tation. The following statements are equivalent:
(i) If u ∈ C2, u exhibits DARA.

(ii) ≿wa is more risk averse than ≿wb , ∀wa ≤ wb.

(iii) c(F,≿wa ) ≤ c(F,≿wb ), ∀F ∈ F , ∀wa ≤ wb.

(iv) wb – wa ≤ c(F + wb,≿) – c(F + wa,≿), ∀F ∈ F , ∀wa ≤ wb.
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(iii) c(F,≿wa ) ≤ c(F,≿wb ), ∀F ∈ F , ∀wa ≤ wb.

(iv) wb – wa ≤ c(F + wb,≿) – c(F + wa,≿), ∀F ∈ F , ∀wa ≤ wb.

Proof

(i) ⇐⇒ (ii): Follows from (i) ⇐⇒ (iv) in previous theorem.

(ii) ⇐⇒ (iii): Follows from (i) ⇐⇒ (ii) in previous theorem.

(iii) ⇐⇒ (iv): Need an intermediate lemma:
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Risk Attitudes with Changing Wealth

Theorem

(iii) c(F,≿wa ) ≤ c(F,≿wb ), ∀F ∈ F , ∀wa ≤ wb.

(iv) wb – wa ≤ c(F + wb,≿) – c(F + wa,≿), ∀F ∈ F , ∀wa ≤ wb.

Proof

(iii) ⇐⇒ (iv): Need an intermediate lemma:

Lemma: Let ≿ be preference relation on F , and u a strictly increasing expected utility
representation. Then, c(F,≿w) = c(F + w,≿) – w.

Proof of the lemma:

u(c(F,≿w) + w) = uw(c(F,≿w))

= EF [uw] =
∫
X
uw(x)dF(x) =

∫
X
u(x + w)dF(x)

=
∫
X+w

u(x)dF(x – w) = EF+w[u] = u(c(F + w,≿)),

where X + w := {x + w | x ∈ X}.

(iii) ⇐⇒ (iv): 0 ≤ c(F,≿wb ) – c(F,≿wa ) = c(F + wb,≿) – wb – c(F + wa,≿) + wa. □
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Constant Absolute Risk Aversion
Utility representations of CARA preferences are pinned-down

(of course, up to positive affine transformations).

Proposition

≿ exhibits CARA and admits a twice-differentiable utility representation u if and only if
∃α > 0, β ∈ R such that u(x) = –αsign(γ) exp(–γx) + β if γ ̸= 0, and u(x) = αx + β if
otherwise, where γ = rA(x, u),∀x ∈ X.

Proof

rA(x, u) = –u′′(x)
u′(x)

= γ ⇐⇒
∫

γdx = –
∫

u′′(x)
u′(x)

dx ⇐⇒ ln u′(x) + k1 = –γx.

If γ ̸= 0, then

ln u′(x) + k1 = –γx ⇐⇒ u′(x) = exp(–γx – k1) ⇐⇒ u(x) = –exp(–k1)
γ

exp(–γx) + k2,

for some k1, k2 ∈ R. If instead γ = 0, u′′(x) = 0 =⇒ u(x) = αx + β. □
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Constant Relative Risk Aversion

Definition

Let u ∈ C2 be a EU representation of ≿. The Arrow-Pratt coefficient of relative risk
aversion at x ∈ X is given by rR(x, u) := – u′′(x)

u′(x) x.

Proposition

≿ exhibits CRRA and admits a twice-differentiable utility representation u if and only if
∃α > 0, β ∈ R such that u(x) = α

x1–γ

1–γ
+ β, if γ ̸= 1, and u(x) = α ln(x) + β if otherwise,

where γ = rR(x, u), ∀x ∈ X.

Proof

rR(x, u) = –u′′(x)
u′(x)

x = γ ⇐⇒
∫

γ
1
x
dx = –

∫
u′′(x)
u′(x)

dx ⇐⇒ ln u′(x) = –γ ln x + k1

⇐⇒ u′(x) = exp(k1)x
–γ ⇐⇒ u(x) = exp(k1)

x1–γ

1 – γ
+ k2,

if γ ̸= 1 for some k1, k2 ∈ R. If γ = 1, then u′(x) = exp(k1)x–1 ⇐⇒ u(x) = exp(k1) ln x + k2.
□
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Constant Relative Risk Aversion

Definition

Let u ∈ C2 be a EU representation of ≿. The Arrow-Pratt coefficient of relative risk
aversion at x ∈ X is given by rR(x, u) := – u′′(x)

u′(x) x.

Proposition

≿ exhibits CRRA and admits a twice-differentiable utility representation u if and only if
∃α > 0, β ∈ R such that u(x) = α

x1–γ

1–γ
+ β, if γ ̸= 1, and u(x) = α ln(x) + β if otherwise,
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Constant Relative Risk Aversion

Definition

Let u ∈ C2 be a EU representation of ≿. The Arrow-Pratt coefficient of relative risk
aversion at x ∈ X is given by rR(x, u) := – u′′(x)

u′(x) x.

Interesting fact about CRRA preferences: the only class of utility functions that, in a
Solow model with technological progress at rate g, delivers a balanced growth path.
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More Issues with Expected Utility

Another issue: small-stakes risk aversion

Rabin’s Calibration theorem (2000 Ecta):
If u concave, changes in small stakes approx. linear
Small-stakes risk aversion gives rise to wild estimates:
If reject -$100 wp 1/2, +$125 wp 1/2 for wealth levels less than $300k,
then reject -$600 wp 1/2, +$36B wp 1/2 for starting wealth of $290k
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More Issues with Expected Utility

Other ways to risk aversion

Rank-Dependent Expected Utility (Quiggin, 1982 JEBO); cumulative prospect theory
(Tversky & Kahneman, 1992 JRU)
Main gist: small probabilities of the worst events loom larger than they are
Attracted lots of discussion recently (a good topic for a survey)
Dual Expected Utility (Yaari 1987 Ecta): tractable special case; recent applications
to auctions and finance (Gershkov, Moldovanu, Strack, & Zhang 2022)

Cognitive Perception of Risk
Choice under risk and computational complexity (Oprea, 2024 AER)
Uncertainty regarding valuation
Models of cognitive imprecision of risk (e.g., Netzer, Robson, Steiner, & Kocourek
2024, JEEA; Khaw, Li, & Woodford 2021 RES); existing applications to finance and
macro

Ordered Reference Dependent Choice (Lim, 2021 WP)
Way in which alternatives are compared depend on set of alternatives, e.g.,
existence of sure things, ‘riskiness’ of riskiest alternative, etc.
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More Issues with Expected Utility

Should we just throw away EU?
EU has normative appeal and people should behave according to its principles.
EU is still a useful model for choice under risk

Understanding better when it holds and when it fails is illuminating
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